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References 4. Implications for future projections

Prediction uncertainty is highest for 

regions near climatic thresholds.

Significant uncertainty can arise from 

even small changes in fire-climate 

relationships.

Threshold-driven uncertainty will be 

most prominent in tundra and forest-

tundra regions during the early 21st

century. 

Statistical models using historical observations are a critical tool for anticipating future fire 

regimes1. A key uncertainty with these models is the ability to project outside the range of 

historical observations2, often done when making future projections. Here we investigate how 

nonlinear, threshold relationships between climate and fire contribute to uncertainties in 

projections of fire activity outside the range of historical observations, by applying a set of 

statistical models to predict fire activity over the past ~1100 years. We ask two key questions: 

Questions

Global Climate Models (GCMs)

(1) How do nonlinear, 

threshold relationships 

impact our ability to 

predict fire regimes? 

(2) What are the implications 

for accurately predicting 

future fire regimes? 

Award: 14-3-01-7

The accuracy of model 

predictions for the past 

millennium varied 

significantly depending on 

how close a site was to 

observed climatic 

thresholds. Prediction 

errors were low in regions 

further away from the 13.4

°C threshold (i.e., Brooks 

Foothills and Yukon Flats) 

and highest in regions 

close to this threshold.

To evaluate how well historical models predicted fire regimes for 

the past 1000 years, we used downscaled GCM climate data to 

drive 100 boosted regression tree models (BRTs)11, which predict 

the 30-yr probability of fire occurrence. We quantified model 

performance using a standardized error measure (Ei,j,k), where i 

represents ecoregion, j represents a lake within the ith ecoregion, 

and k is one of 100 BRTs. Observed (O) and predicted (P) values 

were converted to mean fire return intervals (e.g. nyr / Pi,j,k).

Modifying threshold locations 

had a significant impact on 

predictive performance in 

regions near climatic thresholds.

Modifying the shape of the fire-

climate relationship had less 

impact on prediction accuracy 

than modifying threshold values. 

The most extreme modification 

(H3) resulted in the largest 

changes, specifically in regions 

at or below the 13 °C threshold 

(e.g., Copper River Basin, North 

Slope, respectively).

To understand the 

sensitivity of predictions 

to the shape of threshold 

relationships, we modified 

historical fire-climate 

relationships: 

Testing different fire-climate relationships
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Study area in Alaska, including historical 

fires (1950-2009), modern vegetation, and 

locations of paleofire records (n = 29). 

Climatic locations of paleofire records (top) and 

predicted probability of fire from statistical models 

based on historical fire-climate relationships3. 

Mean Temperature of the Warmest Month (°C)
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Downscaled4 GCM data5 were used to 

drive statistical models over the past 1000 

years. 

To understand how threshold-related uncertainty 

may impact future projections, we classified 

locations in Alaska based on the proximity to the 

observed temperature threshold (13.4 °C).

Historical (1971-2000) 2010-2039

2040-2069 2070-2099

Below threshold 

(< 11.4 °C)

Near threshold

(≥ 11.4 °C AND < 15.4 °C)

Quantifying model performance

We used 29 paleofire records6,7,8,9,10 which 

identify fire events with statically significant 

charcoal peaks, to quantify model performance 

over the period 850-1850 CE. 

Paleofire Records
Yukon Flats

No Fire Fire

Year CE

Awards:

ARC-1023477, 

ARC-1023669

Above threshold

(≥ 15.4 °C)

Study Area and historical models
Degrees from Threshold (°C)

Year CE

Most tundra and the forest-tundra regions lie near 

the temperature threshold, currently (1971-2000) 

and in the near future (2010-2039). 

During the mid- and late-21st century (2040-2100), 

most of Alaska exceeds the temperature threshold, 

surpassing this area of high uncertainty.

Example for a single BRT

Pi,j,k = 7.54

Oi,j = 7

Year CE

+0.00 °C +0.50 °C

+1.00 °C +1.50 °C

Modified threshold

Modified shape of fire-climate relationship
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H1 H2 H3Hist. Yukon Flats
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Kobuk

Valley

Copper River

North Slope, 

Brooks Range, 

Yukon Delta
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Comparing predictions and paleofire reconstructions
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